Keyword

CONTINENT > ANTARCTICA > Davis Station

12 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 10 / 12
  • This consolidated dataset consisting of Australian Hydrographic Service (AHS) surveys HI468, HI590, HI621 and HI634 converted to International Terrestrial Reference Frame 2000 (ITRF2000) horizontal datum with Z conversion values for multiple height datums. The data was provided to the AAD by Paul Digney of Jacobs consulting in February 2021. Included survey datasets: - HI468_Davis_Z43_Appraised_Part_ITRF2000 - HI468_Davis_Z44_Appraised_ITRF2000 - HI590_Davis_Part_ITRF2000 - HI621B_Davis_Merged_ITRF2000 - HI634_Davis_AreaA_ITRF2000 - HI634_Davis_AreaD_ITRF2000 - HI634_Davis_AreaF_ITRF2000 - HI634_Davis_AreaI_ITRF2000 - HI634_Davis_AreaJ3_ITRF2000 - HI634_Davis_AreaJ4_ITRF2000 - HI634_Davis_Rocks_ITRF2000 All data are in horizontal datum ITRF2000 and have been combined into a single ESRI geodatabase feature class titled AHS_Surveys_Davis_ITRF2000. Attribute data shows quality information, conversion factors (shift in metres) for multiple datums and the MSL orthometric height in the Davis 83 datum: Column Name Alias Meaning Easting, Easting, Easting ITRF2000 Northing, Northing, Northing ITRF2000 CD_To_GRS8, CD_To_GRS80, LAT (Chart Datum) to the Ellipsoid GRS80_To_D, GRS80_To_DAVIS83_MSL, Ellipsoid to DAVIS Height Datum 83 Z_To_GRS80, Z_To_GRS80, Height to the Ellipsoid Z_To_DAVIS, Z_To_DAVIS83_MSL, Local MSL orthometric height (DAVIS Height Datum 83) Vertical_U, Vertical_Uncertainty, How good is the Vertical Position Horizontal, Horizontal Uncertainty, How good is the Horizontal Position Uncertaint, Uncertainty Comments, Depth_Comm, Depth_Comments, Vertical uncertainty is 0.24 to 0.5 m for hydrographic values and 0.25 to 0.5 m for terrestrial values. See the attached document ‘Metadata_Record_Davis_Final (002).xlsx’ for further details.

  • The data reports the pigment concentrations and results of CHEMTAX analysis for 2 summer seasons in Antarctic. In 2008/09 three experiments in which 6 x 650 l minicosms (polythene tanks) were used to incubate natural microbial communities (less than 200 um diameter) at a range of CO2 concentrations while maintained at constant light, temperature and mixing. The communities were pumped from ice-free water ~60 m offshore on 30/12/08, 20/01/09 and 09/02/09. These experiments received no acclimation to CO2 treatment. A further experiment was performed in 2014/15 using water helicoptered from ~ 1 km offshore amongst decomposing fast ice on 19/11/14. This experiment included a 5 day period during which the community was exposed top low light and the CO2 was gradually raised to the target value for each tank, followed by a two day period when the light was raised to an irradiance that was saturating but not inhibitory for photosynthesis. A range of coincident measurements were performed to quantify the structure and function of the microbial community (see Davidson et al. 2016 Mar Ecol Prog Ser 552: 93–113, doi: 10.3354/meps11742 and Thomson et al 2016 Mar Ecol Prog Ser 554: 51–69, 2016, doi: 10.3354/meps11803). The data provides a matrix of samples against component pigment concentration and the output from CHEMTAX that best explained the phytoplankton composition of the community based on the ratios of the component pigments. For the 2008/09 experiments, samples were obtained every 2 days for 10, 12 and 10 days in experiments 1, 2 and 3 respectively. In 2014/15 samples were obtained from each incubation tank on days 1,3, 5, and 8 during th acclimation period and every 2 days until day 18 thereafter. For each sample a measured volume was filtered through 13 mm Whatman GF/F filters for 20 mins. Filters were folded in half, blotted dry, and immediately frozen in liquid nitrogen for analysis in Australia. Pigments were extracted, analysed by HPLC, and quantified following the methods of Wright et al. (2010). Pigments (including Chl a) were extracted from filters with 300 micro l dimethylformamide plus 50 micro l methanol, containing 140 ng apo-8'-carotenal (Fluka) internal standard, followed by bead beating and centrifugation to separate the extract from particulate matter. Extracts (125 micro l) were diluted to 80% with water and analysed on a Waters HPLC using a Waters Symmetry C8 column and a Waters 996 photodiode array detector. Pigments were identified by comparing retention times and spectra to a mixed standard sample from known cultures (Jeffrey and Wright, 1997), run daily before samples. Peak integrations were performed using Waters Empower software, checked manually for corrections, and quantified using the internal standard method (Mantoura and Repeta, 1997).

  • Experimental Set-up: An unreplicated, 6-level, dose-response experiment was conducted on a natural microbial community over a range of pCO2 levels (343, 506, 634, 953, 1140 and 1641 micro atm). Seawater was collected on the 19th November 2014 approximately 1 km offshore from Davis Station, Antarctica (68 degrees 35' S, 77 degrees 58' E) from an area of ice-free water amongst broken fast-ice. The seawater was collected using a thoroughly rinsed 720L Bambi bucket slung beneath a helicopter and transferred into a 7000 L polypropalene reservoir tank. Six 650 L polyethene tanks (minicosms), located in a temperature-controlled shipping container, were immediately filled via teflon lined house via gravity with an in-line 200 micron Arkal filter to exclude metazooplankton. The minicosms were simultaneously filled to ensure they contained the same starting community. The ambient water temperature at time of collection was -1.0 degrees C and the minicosms were maintained at a temperature of 0 degrees C plus or minus 0.5 degrees C. At the centre of each minicosm there was an auger shielded for much of its length by a tube of polythene. This auger was rotated at 15 rpm to gently mix the contents of the tanks. Each minicosm tank was covered with an acrylic air-tight lid to prevent pCO2 off-gasing outside of the minicosm headspace. The minicosm experiment was conducted between the 19th November and the 7th December 2014. Initially, the contents of the tanks were given a day to equibrate to the minicosms. This was followed by a five day acclimation period to increasing pCO2 at low light (0.8 plus or minus 0.2 micro mol m-1 s-1), allowing cell physiology to acclimated to the pCO2 increase (days 1-5). During this period the pCO2 was progressively adjusted over five days to the target level for each tank (343 - 1641 micro atm). Thereafter pCO2 was adjusted daily to maintain the pCO2 level in each treatment (see carbonate chemistry section below). Following acclimation to the various pCO2 treatments light was progressively adjusted to 89 plus or minus 16 micro mol m-2 s-1 at a 19 h light:5 h dark cycle. The community was incubated and allowed to grow for a further 10 days (days 8-18) with target pCO2 adjusted back to target each day (see carbonate chemistry section below). For a more detailed description of minicosm set-up, lighting and carbonate chemistry see; Davidson, A. T., McKinlay, J., Westwood, K., Thomson, P. G., van den Enden, R., de Salas, M., Wright, S., Johnson, R., and Berry, K.:Enhanced CO2 concentrations change the structure of Antarctic marine microbial communities, Mar. Ecol. Prog. Ser., 552, 93-113, 2016. Deppeler, S. L., Petrou, K., Westwood, K., Pearce, I., Pascoe, P., Schulz, K. G., and Davidson, A. T.: Ocean acidification effects on productivity in a coastal Antarctic marine microbial community, Biogeosciences, 2017. Light microscopy sampling and analysis: Samples from each minicosm were collected on days 1, 3, 5, 8, 10, 12, 14, 16 and 18 for microscopic analysis to determine protistan identity and abundance. Approximately 960 mL were collected from each tank, on each day. Samples were fixed with 20 40 mL of Lugol's iodine and allowed to sediment out at 4 degrees C for greater than or equal to 4 days. Once cells had settled the supernatant was gently aspirated till approximately 200 mL remained. This was transferred to a 250 mL measuring cylinder, again allowed to settle (as above), and the supernatant gently aspirated. The remaining 20 mL. This final 20 mL was transferred into a 30 mL amber glass bottle. All samples were stored and transported at 4 degrees C to the Australian Antarctic Division, Hobart, Australia for analysis. Lugols-fixed and sedimented samples were analysed by light microscopy between July 2015 and February 2017. Between 2 to 10 mL (depending on cell-density) of lugols-concentrated samples was placed into a 10 mL Utermohl cylinder (Hydro-Bios, Keil) and the cells allowed to settle overnight. Due to the large variation in size and taxa, a stratified counting procedure was employed to ensure both accurate identification of small cells and representative counts of larger cells. All cells greater than 20 microns were identified and counted at 20x magnification; those less than 20 microns at 40x magnification. For larger cells (greater than 20 microns), 20 randomly chosen fields of view (FOV) at 3.66 x 106 microns2 counted to gain an average cells per L. For smaller cells (less than 20 microns), 20 randomly chosen FOVs at 2.51 x 105 microns2 were counted. Counts were conducted on an Olympus IX 81 microscope with Nomarski interference optics. Identifications were determined using (Scott and Marchant, 2005) and FESEM images. Autotrophic protists were distinguished from heterotrophs via the presence of chloroplasts and based on their taxonomic identity. Electron microscopy sampling and analysis: A further 1 L was taken on days 0, 6, 13 and 18 for analysis by Field Emission Scanning Electron Microscope (FESEM). 25 These samples were concentrated to 5 mL by filtration over a 0.8 micron polycarbonate filter. Cells were resuspended, the concentrate transferred to a glass vial and fixed to a final concentration of 1% EM-grade gluteraldehyde (ProSciTech Pty Ltd). All samples were stored and transported at 4 degrees C to the Australian Antarctic Division, Hobart, Australia for analysis. Gluteraldehyde-fixed samples were prepared for FESEM imaging using a modified polylysine technique (Marchant and Thomas, 30 1983). In brief, a few drops of gluteraldehyde-fixed sample were placed on polylysine coated cover slips and post-fixed with OsO4 (4%) vapour for 30 min, allowing cells to settle onto the coverslips. The coverslips were then rinsed in distilled water and dehydrated through a graded ethanol series ending with emersion in 100% dry acetone before being critically point dried in a Tousimis Autosamdri-815 Critical Point Drier. The coverslips were mounted onto 12.5 mm diameter aluminium stubs and sputter-coated with 7 nm of platinum/palladium in a Cressington 208HRD coater. Imaging of stubs was conducted by JEOL JSM6701F FESEM and protists identified using (Scott and Marchant, 2005). All units are in cells per L estimates from individual field of view counts (FOV) Protistan taxa and functional group descriptions and abbreviations: Autotrophic Dinoflagellate (AD) - including Gymnodinium sp., Heterocapsa and other unidentified autotrophic dinoflagellates Bicosta antennigera (Ba) Chaetoceros (Cha) - mainly Chaetoceros castracanei and Chaetoceros tortissimus but also other Chaetoceros present including C. aequatorialis var antarcticus, C. cf. criophilus, C. curvisetus, C. dichaeta, C. flexuosus, C. neogracilis, C. simplex Choanoflagellates (except Bicosta) (Cho) - mainly Diaphanoeca multiannulata but also Parvicorbicula circularis and Parvicorbicula socialis present in low numbers Ciliates (Cil) - mostly cf. Strombidium but other ciliates also present Discoid Centric Diatoms greater than 40 microns (DC.l) - unidentified centrics of the genera Thalassiosira, Landeria, Stellarima or similar Discoid Centric Diatoms 20 to 40 microns (DC.m) - unidentified centrics of the genera Thalassiosira, Landeria, Stellarima or similar Discoid Centric Diatoms less than 20 microns (DC.s) - unidentified centrics of the genera Thalassiosira Euglenoid (Eu) - unidentified Fragilariopsis greater than 20 microns (F.l) - mainly Fragilariopsis cylindrus, some Fragilariopsis kerguelensis and potentially some Fragilariopsis curta present in very low numbers Fragilariopsis less than 20 microns (F.s) - mainly Fragilariopsis cylindrus, and potentially some Fragilariopsis curta present in very low numbers Heterotrophic Dinoflagellates (HD) - including Gyrodinium glaciale, Gyrodinium lachryma, other Gyrodinium sp., Protoperidinium cf. antarcticum and other unidentified heterotrophic dinoflagellates Landeria annulata (La) Other Centric Diatoms (OC) - Corethronb pennatum, Dactyliosolen tenuijuntus, Eucampia antarctica var recta, Rhizosolenia imbricata and other Rhizosolenia sp. Odontella (Od) - Odontella weissflogii and Odontella litigiosa Other Flagellates (OF) - Dictyocha speculum, Chrysochromulina sp., unknown haptophyte, Phaeocystis antarctica (flagellate and gamete forms), Mantoniella sp., Pryaminmonas gelidicola, Triparma columaceae, Triparma laevis subsp ramispina, Geminigera sp., Bodo sp., Leuocryptos sp., Polytoma sp., cf. Protaspis, Telonema antarctica, Thaumatomastix sp. and other unidentified nano- and picoplankton Other Pennate Diatoms (OP) - Entomonei kjellmanii var kjellmanii, Navicula gelida var parvula, Nitzschia longissima, other Nitzschia sp., Plagiotropus gaussi, Pseudonitzschia prolongatoides, Synedropsis sp. Phaeocystis antarctica (Pa) - colonial form only Proboscia truncata (Pro) Pseudonitzschia subcurvata (Ps) Pseudonitzschia turgiduloies (Pt) Stellarima microtrias (Sm) Thalassiosira antarctica (Ta) Thalassiosira ritscheri (Tr) *.se = standard error for mean cell per L estimate ie. Tr.se = standard error for the mean cells per L for Thalassiosira ritscheri based on individual FOV estimates as described in methods above. Davis Station Antarctica Experiment conducted between 19th November and 7th December 2014.

  • This data set provides the organochlorine content found in four sea-ice samples collected in the vicinity of Davis station over a three week period in 2014/15. Sea-ice is thought to serve as a reservoir for organochlorine pesticides during the winter. The aim of the study was to investigate the movement of organochlorine pesticides in the seasonal sea-ice during ice melt. A custom made, closed-system, ice melting unit, coupled to an in-situ water filter, was implemented for sampling. Minimal ice-melt or change in organchlorine content was found over the three week period. Changes were attributed to high ventilation of the sea-ice surface caused by high wind speeds found in the Antarctic compared to the Arctic. 4 sea-ice samples were collected in the vicinity of Davis station and contaminant profiles extracted and analysed. Caution should be taken in interpretation of data as the ice/water extraction unit failed during operation.

  • Data show length (cm) and weight (g) of Trematomus bernacchii from four sites along a gradient south in the direction of the current from the Davis Station wastewater outfall (Outfall (0km); Torkler Rocks (1km); Warriner Island (4km) and Kazak Island (9km)) and two reference sites north of the outfall (Long Fjord (9kmN) and Bandits Hut (16km N). Fish were collected in the summer of 2012/13 using line and box traps. Fish were transported immediately back to the lab for analysis.

  • Data on the morphological and reproductive responses of 4 species of wild caught Abatus heart urchins (A. nimrodi, A. shackletoni, A. ingens, and A. philippii) to sewage effluent from the Davis station sewage outfall. Between 19 and 21 individuals of each species were collected from three sites close to the station. The Sewage outfall site, which acted as the impacted site for the study, and two reference sites, one at Airport Beach, and a second and Heidemann Bay. Morphological measurements taken from each individual were length, width, height, anterior length, and posterior length. A qualitative assessment of the calcareous test of each individual was conducted to determine the presence of any abnormalities (as per Land 2005, PhD thesis) in the individuals morphology. Reproductive data collected were a gonadosotic index (calculated by dividing the gonal mass of a individual by the total mass of that individual). And for females morphological measurements (length and width) of each brood pouch were taken, and the type and number of juveniles in each pouch was counted. Data available: In the spreadsheet provided a description of measurements is given in the first tab. All morphological and reproductive data is presented in the second tab. In full these are; Parent Barcode (for tracking purposes) Individual Barcode (for tracking purposes), date collected (date the animal was collected) date processed (date data were collected) site (site the animal came from) species (nimrodi, shackletoni, ingens, or philippii) sex (male or female) samples taken for other projects (morphology, genetics, histology) Morphological measurements (length, width, height, posterior length, anterior length, all recorded in millimetres) Any of a possible 6 abnormalities observed. Brood pouch morphometrics (length and width in millimeters of each of the 4 brood pouches for a female) Reproductive fitness, being the number of young at any of 3 stages in each of the 4 brood pouches and the total number of juveniles produced by the adult female. Total Wet Mass (mass of the entire animal recorded in grams) Gonad Wet Mass (mass of the gonad of an individual) Gonadosmotic Index (measure of reproductive fitness, and is the Gonad Wet Mass divided by the Total Wet Mass of each individual) A blank datasheet used to record the data is contained within the third tab. The two final tabs are appendices used to aid the qualitative assessments. The first (Appendix 1) gives photo descriptions of each of the known abnormalities in Abatus sp (Adapted from Lane (2005) PhD thesis). The second (Appendix 2) gives photo descriptions of each of the developmental stages of juveniles in Abatus sp.

  • This metadata record is the parent umbrella under which data from the 2008/09, 2013/14 and 2014/15 summer will be housed. See the child records for access to the data. Manmade CO2 has increased ocean acidity by 30% and it is projected to rise 300% by 2100. Antarctic waters will be amongst the earliest and most severely affected by this increase. Microbes are the base of the marine food chain and primary drivers of the biological pump. This project will incubate natural communities of Antarctic marine microbes in minicosms at a range of CO2 concentrations to quantify changes in their structure and function, the physiological responses that drive these changes, and provide input to models that predict effects on biogeochemical cycles and Antarctic food webs

  • This data set was collected from two minicosm experiments conducted at Davis Station, Antarctica. 1. Variance experiment - 2013/14 summer season 2. Ocean acidification experiment - 2014/15 summer season It includes: - description of methods for all data collection and analyses. - environmental data logged throughout the experiment; nutrients, temperature, light climate. - flow cytometry counts; autotrophic cells, heterotrophic nanoflagellates, and prokaryotes. - FlowCam counts; individual phytoplankton species data. - microscopy counts; individual phytoplankton species data.

  • This data set was collected from a ocean acidification minicosm experiment performed at Davis Station, Antarctica during the 2014/15 summer season. It includes: - description of methods for all data collection and analyses. - environmental data logged throughout the experiment; nutrients, temperature, light climate. - carbonate chemistry data; pH (on Total scale), fugacity of CO2, dissolved inorganic carbon concentration, practical alkalinity, Omega calculations for both araganite and calcite. - product datasheet (including transmission spectra) of Osram 150W HQI-TS/NDL metal halide lamps.

  • A times series of data was collected from coastal (land-fast) sea ice at Davis Station, Eastern Antarctica (68 degrees 34' 36" S, 77 degrees 58' 03" E; Figure 1) from November 16 to December 2, 2015. Sea ice temperature and salinity, as well as macro-nutrients (nitrate NO3-, nitrite NO2-, ammonium NH4+, phosphate PO43- and DSi), particulate organic carbon (POC) and chlorophyll a (Chla) in the sea ice were measured six times in 16 days of austral spring and early summer (Nov. 16, Nov. 20, Nov. 23, Nov. 26, Nov. 29, and Dec. 2; in days of the year, 320, 325, 327, 330, 333, and 336). Depths were measured from the top of the ice cores. Seawater below the ice was also sampled for comparison. Samples of snow, sea ice, brine and under-ice seawater were collected under trace metal clean conditions near Davis station during the transition of sea ice from winter to spring conditions (October 2015), on a regular basis (every 4 days) for 3 weeks. 6 sampling events were successfully achieved. The list of parameters collected during the fast ice study include in situ temperature, ice texture, pH, oxygen, iron and Chla, Br/I, carbonate, nutrients and POC, incubations with stable N and C isotopes. Samples are currently returning on V3 and will be analysed in the US, Belgium and Australia in the coming months. The biogeochemical observations will allow us to determine the roles of light versus iron in the initiation of the spring bloom in this region, and the role of the melting fast ice in fertilising the spring time primary production.